Tomra Sorting Recycling lanzó su nueva maquinaria de clasificación basada en deep learning, llamada Gain, con la que se gana mayor capacidad de rendimiento de sus máquinas de clasificación basada en sensores.
El deep learning es un método de inteligencia artificial (IA) que permite que los ordenadores imiten el aprendizaje humano.
La tecnología se ofrece como complemento de la máquina Autosort, equipo que clasifica objetos a partir de los datos recuperados por el sensor de la cámara RGB del Autosort, Gain permite alcanzar unos niveles de pureza inalcanzables hasta el momento, manteniendo además la velocidad de producción de la maquinaria.
La empresa lanzó oficialmente esta tecnología de clasificación el 5 de noviembre con ocasión de Ecomondo (Rímini, Italia), el evento más importante de Europa para todos los sectores de la economía circular.
La nueva tecnología de clasificación busca lograr una economía realmente circular que busca la correcta eliminación de residuos y la máxima reutilización de los limitados recursos naturales, resulta fundamental la incorporación de tecnologías como las soluciones de clasificación de la compañía.
En palabras de Alessandro Granziera, Director de Ventas de Tomra Sorting Recycling en Italia: "Al aprovechar el deep learning en las tecnologías de clasificación, sofisticamos y hacemos aún más eficaces sus máquinas de clasificación.
La tecnología también ayudará a que las máquinas de clasificación se adapten a nuevos flujos de residuos, cuya importancia será cada vez mayor conforme avancemos hacia la economía circular".
Ventajas de la maquinaria de clasificación
El deep learning, como método de inteligencia artificial (IA), permite que las computadoras imiten el aprendizaje humano. Los seres humanos identificamos distintos objetos y materiales realizando asociaciones entre lo que vemos y lo que ya hemos visto. Las máquinas aprenden a realizar esas mismas asociaciones, pero las realizan con mucha mayor rapidez.
Hay que resaltar que las máquinas de la empresa llevan empleando inteligencia artificial desde que la clasificación daba sus primeros pasos, pero esta tecnología está en constante evolución y su tecnología va ahora un paso más allá y emplea algoritmos que se obtienen del deep learning.
El aprendizaje automático “clásico” de las máquinas requiere que un experto diseñe sus características, mientras que el deep learning, que es tipo de aprendizaje automático, no lo necesita. Simplemente, y a partir de miles de imágenes, aprende a identificar los distintos tipos de productos que debe clasificar.
La maquinaria de clasificación deep learning imita la actividad de una gran cantidad de capas neuronales del cerebro humano para aprender tareas complejas y durante el aprendizaje, Gain aprende a conectar las neuronas artificiales para clasificar objetos.
Eliminación de cartuchos de silicona
La primera aplicación de la tecnología de Tomra está diseñada específicamente para el flujo de polietileno (PE), logrando separar del mismo los problemáticos cartuchos de PE de silicona.
Debido a los restos de silicona que quedan siempre en los cartuchos, resulta necesario separarlos del resto de material de polietileno para poder así incrementar la pureza del producto final. Para ello se utilizan la información y datos generados por el sensor de la cámara RGB del Autosort.
Además de detectar las formas habituales de cartuchos de silicona, el sistema es capaz de identificar los cartuchos dobles más pequeños, usados principalmente para adhesivos bicomponente, los cartuchos deformados o aquéllos parcialmente rotos.
Gracias a sus eyectores de aire, las máquinas eliminan incluso cartuchos pegados, tarea que resulta muy complicada incluso para los brazos robotizados más rápidos del mercado.
Esta nueva tecnología ha sido entrenada para realizar esta tarea a partir de miles de imágenes, y logra expulsar el 99 % de los cartuchos mediante el uso de dos sistemas colocados en línea.